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The annotation problem in 3D point clouds  

High-quality 3D object detection relies heavily on annotated pointcloud data. However, 

creating such labeled datasets is expensive, error-prone, and time-consuming, 

particularly when annotating cuboids in sparse LiDAR scans. While manually labeling 2D 

images with bounding boxes is relatively intuitive — objects are visible, well-defined, 

and anchored to familiar visual context, labeling 3D pointclouds with cuboids is far more 

complex.  

First, accurately drawing the cuboid in 3D, adjusting its dimensions and rotating it to fit 

the object is time consuming.  

Second, due to a variety of factors including sparsity of points, occlusion and noise, 

labelers often need to infer the full 3D shape and orientation from partial geometry. This 

requires guess work and a clear understanding of the entire scene.  

  

 

Img-1. Labeling point clouds with cuboids can be difficult, specially in areas that are sparse or 

occluded.  

  

Our solution  

We introduce a point-and-click tool for 3D cuboid generation using an unsupervised 

clustering method, designed for fast, scalable annotation. It works on datasets from a 

variety of use-cases including, self-driving, medical imaging and logistics. Here is a brief 

overview of how it works:  

Input: User clicks on a point belonging to the target object in the point cloud.  



Local Clustering: Nearby points are clustered into a group.  

Ground removal: A lightweight ground segmentation model filters out ground points.  

Cuboid fit: A cuboid is fit covering the points.   

Shape correction: The resulting cuboid is adjusted to class-specific default dimensions.  

This entire process is extremely fast, and depending on the size of the object, requires 

very little waiting time from the user. In our experiments, we have found the response 

times to be between 0.2 to 0.8 seconds, depending on the hardware.  

  

 

Why unsupervised?  

Supervised Machine Learning models trained on large amounts of data have been at the 

fore-front of the rapid progress of AI systems in the last decade. However, in the context 

of 3D point clouds, particularly when using them to help annotation, supervised methods 

suffer from severe limitations.  

Data Scarcity  

Labeled 3D datasets are limited in size and scope. They are also much more resource 

intensive to collect and then label. In addition, ML models trained on one dataset do not 

generalize well beyond their specific domains or environments.  

Class and Context dependence  

ML models trained on specific object types (e.g., cars) in one environment often perform 

poorly when deployed in different contexts or with unseen classes. They are also limited 

to classes they have seen, leading to limited applicability to new datasets.   

 

 

Our methodology  

Our approach is inspired by the clustering method proposed in Latte, but we make 

several key enhancements to improve its robustness, accuracy, and usability in real-

world annotation pipelines. These are explained below.  

  

https://arxiv.org/abs/1904.09085


 

Img-2 Steps in our clustering method. Figure A shows the raw point-cloud around the target point. 
Figure B shows the result of our local ground-removal method. Figure C shows points clustered from 
the non-ground points returned in B. Finally Figure D shows a cuboid fitting the clustered points  

  

Clustering without pre-segmented ground points  

Latte requires the point clouds to be pre-segmented into ground and non-ground points. 

This adds an extra layer of complexity to the process. In addition, segmenting entire 

point clouds into ground/non-ground points is not trivial and can lead to poor results. 

Most ground segmentation methods try to fit the ground points into a 2D plane. However, 

this approach does not work well if the ground is uneven. Our method does not require 

any preprocessing step, resulting in better adaptation across point-clouds with different 

densities and terrains.  

  



Adaptive parameters for varying Pointcloud densities  

In order to make our method suitable across different types of datasets, we introduce 

adaptive thresholding for clustering based on local point density. This allows our method 

to work well across scans captured from sensors with varying resolutions and under 

diverse environmental conditions.  

  

Simple ground detection for object isolation  

Rather than requiring the ground segmentation of the entire scene, we use a lightweight, 

local ground detection model tailored to the target object. This simplifies the 

architecture and vastly increases the overall speed. Ground points below individual 

objects can be easily modeled with a plane, which results is more consistent ground 

point removal.  

  

Cuboid correction using default class dimensions  

A big issue when using clustering to annotate objects, is when only a few points 

belonging to the object are visible. This can happen if the objects far away from the 

sensor, if the object is occluded, or only one of the sides is visible.  

To address these issues, we apply a correction step that fits a cuboid to resemble default 

dimensions for the object’s class. These default dimensions act as a prior and help 

regularize the cuboid fitting process, especially when data is sparse or occluded.  

  

Evaluation Strategy  

Traditional evaluation of interactive annotation tools like ours often relies on measuring 
the labeling time or gathering user feedback. Latte utilizes the same approach. However, 
these metrics are subjective, time consuming and hard to standardize. Instead, we take 
an objective approach based on measuring the geometric accuracy of predicted 
annotations against known ground truth datasets.  

  

Evaluation Datasets  

We use three well-established datasets for evaluation:  

KITTI  

We use the 3D object detection evaluation dataset found here. Our evaluation is done 
against the train dataset, which consists of 7481 point cloud files with ~80K labeled 
objects. Note that the KITTI dataset only contains labels for objects that are visible in the 
reference camera images. Also note that the cuboids are labeled in 2D only. The object’s 
height and it’s placement in z-direction are not accurate. Both of these points however, 

https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d


do not change our evaluation, since we use BEV method to calculate the IoU and only run 
our system against cuboids present in the dataset.  

 

Img-3 The red cuboid shows predicted cuboid around the pedestrian, while the green cuboid shows 
the annotated object from KITTI. As can be seen, the GT label is going into the ground and does not 
cover the entire pedestrian in the z-axis.  

  

  
nuScenes  

We also test our system against the nuScenes dataset. We run our evaluation on the 
Trainval dataset, which contains annotated objects across 700 training and 150 
validation scenes. Compared to KITTI, the nuscenes point clouds are much sparser, 
resulting in a lot of occlusion and missing points. To alleviate this issue, we only consider 
labeled objects with points > 10 and visibility > 20%.  

  

ONCE  

Finally we test our system against the ONCE dataset. Our evaluation is run over the test 
split of the dataset which contains 15K fully annotated scenes with 5 classes -  Car, Bus, 
Truck, Pedestrian and Cyclist. Like nuScenes, the point clouds in ONCE are also sparse. 
We also note that pedestrians are labeled with loose cuboids, resulting in an overall 
lower IoU compared to cuboids predicted by our method.  

  

Methodology  

  
Simulation of the Annotation process  

To simulate the user’s "1-click" action, we use the center of each ground truth cuboid and 
find the closest point in the raw point-cloud that falls within the cuboid. This selected 
point acts as the input to our system.   

  
Evaluation metric  

https://www.nuscenes.org/
https://once-for-auto-driving.github.io/


We use the BEV (Bird's Eye View) Intersection-over-Union (IoU) metric to compare 
predicted cuboids with ground truth. Following KITTI conventions, we report recall at a 
70% IoU threshold for cars/vehicles and 50% for other classes. Because each Ground 
Truth cuboid is guaranteed to yield one simulation input and our system outputs only one 
cuboid per input (if the method is successful), precision is not applicable in our 
evaluation framework.  

  
Default dimensions  

Default class dimensions are computed as the average size of cuboids for each class in 
the respective dataset. On our annotation platform, users can input expected default 
dimensions, or let the platform keep a running average based on existing annotations. 
Thus, this process is transferable and customizable to real-world use cases.  

  

  
Results and comparisons  

  

In this section, we compare our system’s performance with the original Latte method. 
The key results are highlighted in Table 1. Note that Latte is only tested against KITTI, so 
we only report the figures mentioned in their paper.  

  



 

  

Dataset  Avg IoU 
(Ours)  

Avg IoU 
(Latte)  

Recall 
(Ours)  

Recall 
(Latte)  

Recall w/o   
Correction  

KITTI  0.8316  82.9  0.8607  84.8  0.8434  

nuScenes  0.7987  NA  0.8213  NA  0.7952  

ONCE  0.7687  NA  0.7943  NA  0.7812  

Table 1 - The Recall column reports recall values using the entirety of our system. The last column 
mentions recall values when not using the last step of our system, where we adjust the predicted 
cuboid to fit a cuboid with default dimensions.  

  

 

There are several reasons for the disparity in performance of our system on KITTI 
compared to the other datasets. One, the point clouds in KITTI are much denser 
compared to the other two datasets. Two, as mentioned in the KITTI paper, annotators 
were instructed to only label objects that were clearly visible.  Per the paper:   

“The annotators were asked to draw bounding boxes for instances for which they feel 
confident, for example instances of vehicles where at least two complete edges are visible. 
Instances that are far away tend to be sparse or occluded and are therefore not annotated.”  

This results in annotated objects that always have a good number of points, and 
precludes objects that are highly occluded or very far away. Since these are the major 
failure cases for our system, not having them in the test set results in higher accuracy 
values.  

  

  

  



Qualitative Observations  

  

In qualitative analysis, we observe several patterns:  

  
Annotation of pedestrians  

Pedestrians in nuScenes are often labeled with loose-fitting cuboids, reducing the 
reported IoU despite visually reasonable predictions. Pedestrians in KITTI, on the other 
hand, are only labeled only in X and Y axes, ignoring the Z dimension completely.  

  
Impact of point density  

Our system performs best when an object is well-scanned, i.e., with a dense point 
distribution. Performance degrades for distant or partially occluded objects. As already 
mentioned earlier, this is why the performance of our system is better on the KITTI 
dataset compared to other datasets.  

  
Effectiveness of dimension correction  

The correction step using class-specific default dimensions substantially improves both 
the shape and alignment of the generated cuboids, especially for classes with consistent 
size (e.g., cars, trucks). This is reflected in the reported values in table 1 above.  

  

  

 Example predictions  

  

  

 

Img-4.  Examples from KITTI (Figures A and B) and Nuscenes (Figure C). Red cuboids are 

predictions from our system, while green cuboids are ground truth cuboids.  

  

  



 

Img-5.  Examples from KITTI (Figures A ) and Nuscenes (Figure C). Due to only the front side 

of the vehicles being visible, our method (sans adjustment from default dimensions) only 

creates a cuboid around the visible points in close proximity. The last step in our method 

helps alleviate this very issue.  Red cuboids are predictions from our system, while green 

cuboids are ground truth cuboids.  

  

 

 

  



Built into Mindkosh  

Our 1-click cuboid generation system is fully integrated into our annotation platform, 
designed for large scale datasets with multiple sensors.  

Single-click interaction: Annotators simply click on a point within an object — the 
system clusters nearby points, fits a cuboid, and adjusts its shape using predefined 
dimensions.  

Custom class dimensions: For each object class (e.g., car, truck, pedestrian), users can 
optionally define expected default dimensions. These help ensure reliable cuboid fits, 
even in sparse or partially occluded scans.   
 

 

Labeling the KITTI dataset on Mindkosh.  

  

 

Want to see Mindkosh in action? Let us know!  
 

  

https://mindkosh.com/contact.html

