

Contents

1. The Annotation Problem in 3D Point Clouds 1 

2. Our Solution ... 2 

3. Why Unsupervised? ... 3 

4. Our Methodology ...

4 

5. Evaluation Strategy 5

a. Evaluation Datasets .. 5

b. Methodology ... 6 

6. Results and Comparisons ... 6 

7. Qualitative Observations .. 7 

8. Built into Mindkosh ... 8

 

The annotation problem in 3D point clouds

High-quality 3D object detection relies heavily on annotated pointcloud data. However,

creating such labeled datasets is expensive, error-prone, and time-consuming,

particularly when annotating cuboids in sparse LiDAR scans. While manually labeling 2D

images with bounding boxes is relatively intuitive — objects are visible, well-defined,

and anchored to familiar visual context, labeling 3D pointclouds with cuboids is far more

complex.

First, accurately drawing the cuboid in 3D, adjusting its dimensions and rotating it to fit

the object is time consuming. 

Second, due to a variety of factors including sparsity of points, occlusion and noise,

labelers often need to infer the full 3D shape and orientation from partial geometry. This

requires guess work and a clear understanding of the entire scene. 

Img-1. Labeling point clouds with cuboids can be difficult, specially in areas that are sparse or

occluded.

 

Our solution

We introduce a point-and-click tool for 3D cuboid generation using an unsupervised

clustering method, designed for fast, scalable annotation. It works on datasets from a

variety of use-cases including, self-driving, medical imaging and logistics. Here is a brief

overview of how it works:

Input: User clicks on a point belonging to the target object in the point cloud.

Local Clustering: Nearby points are clustered into a group.

Ground removal: A lightweight ground segmentation model filters out ground points.

Cuboid fit: A cuboid is fit covering the points.

Shape correction: The resulting cuboid is adjusted to class-specific default dimensions.

This entire process is extremely fast, and depending on the size of the object, requires

very little waiting time from the user. In our experiments, we have found the response

times to be between 0.2 to 0.8 seconds, depending on the hardware.

Why unsupervised?

Supervised Machine Learning models trained on large amounts of data have been at the

fore-front of the rapid progress of AI systems in the last decade. However, in the context

of 3D point clouds, particularly when using them to help annotation, supervised methods

suffer from severe limitations.

Data Scarcity 

Labeled 3D datasets are limited in size and scope. They are also much more resource

intensive to collect and then label. In addition, ML models trained on one dataset do not

generalize well beyond their specific domains or environments.

Class and Context dependence 

ML models trained on specific object types (e.g., cars) in one environment often perform

poorly when deployed in different contexts or with unseen classes. They are also limited

to classes they have seen, leading to limited applicability to new datasets.

Our methodology

Our approach is inspired by the clustering method proposed in Latte, but we make

several key enhancements to improve its robustness, accuracy, and usability in real-

world annotation pipelines. These are explained below. 

https://arxiv.org/abs/1904.09085

Img-2 Steps in our clustering method. Figure A shows the raw point-cloud around the target point.
Figure B shows the result of our local ground-removal method. Figure C shows points clustered from
the non-ground points returned in B. Finally Figure D shows a cuboid fitting the clustered points

Clustering without pre-segmented ground points

Latte requires the point clouds to be pre-segmented into ground and non-ground points.

This adds an extra layer of complexity to the process. In addition, segmenting entire

point clouds into ground/non-ground points is not trivial and can lead to poor results.

Most ground segmentation methods try to fit the ground points into a 2D plane. However,

this approach does not work well if the ground is uneven. Our method does not require

any preprocessing step, resulting in better adaptation across point-clouds with different

densities and terrains.

Adaptive parameters for varying Pointcloud densities

In order to make our method suitable across different types of datasets, we introduce

adaptive thresholding for clustering based on local point density. This allows our method

to work well across scans captured from sensors with varying resolutions and under

diverse environmental conditions.

 

Simple ground detection for object isolation

Rather than requiring the ground segmentation of the entire scene, we use a lightweight,

local ground detection model tailored to the target object. This simplifies the

architecture and vastly increases the overall speed. Ground points below individual

objects can be easily modeled with a plane, which results is more consistent ground

point removal.

 

Cuboid correction using default class dimensions

A big issue when using clustering to annotate objects, is when only a few points

belonging to the object are visible. This can happen if the objects far away from the

sensor, if the object is occluded, or only one of the sides is visible. 

To address these issues, we apply a correction step that fits a cuboid to resemble default

dimensions for the object’s class. These default dimensions act as a prior and help

regularize the cuboid fitting process, especially when data is sparse or occluded.

Evaluation Strategy

Traditional evaluation of interactive annotation tools like ours often relies on measuring
the labeling time or gathering user feedback. Latte utilizes the same approach. However,
these metrics are subjective, time consuming and hard to standardize. Instead, we take
an objective approach based on measuring the geometric accuracy of predicted
annotations against known ground truth datasets.

 

Evaluation Datasets

We use three well-established datasets for evaluation:

KITTI

We use the 3D object detection evaluation dataset found here. Our evaluation is done
against the train dataset, which consists of 7481 point cloud files with ~80K labeled
objects. Note that the KITTI dataset only contains labels for objects that are visible in the
reference camera images. Also note that the cuboids are labeled in 2D only. The object’s
height and it’s placement in z-direction are not accurate. Both of these points however,

https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d

do not change our evaluation, since we use BEV method to calculate the IoU and only run
our system against cuboids present in the dataset.

Img-3 The red cuboid shows predicted cuboid around the pedestrian, while the green cuboid shows
the annotated object from KITTI. As can be seen, the GT label is going into the ground and does not
cover the entire pedestrian in the z-axis. 

 
nuScenes

We also test our system against the nuScenes dataset. We run our evaluation on the
Trainval dataset, which contains annotated objects across 700 training and 150
validation scenes. Compared to KITTI, the nuscenes point clouds are much sparser,
resulting in a lot of occlusion and missing points. To alleviate this issue, we only consider
labeled objects with points > 10 and visibility > 20%.

ONCE

Finally we test our system against the ONCE dataset. Our evaluation is run over the test
split of the dataset which contains 15K fully annotated scenes with 5 classes - Car, Bus,
Truck, Pedestrian and Cyclist. Like nuScenes, the point clouds in ONCE are also sparse.
We also note that pedestrians are labeled with loose cuboids, resulting in an overall
lower IoU compared to cuboids predicted by our method.

Methodology

 
Simulation of the Annotation process

To simulate the user’s "1-click" action, we use the center of each ground truth cuboid and
find the closest point in the raw point-cloud that falls within the cuboid. This selected
point acts as the input to our system.

 
Evaluation metric

https://www.nuscenes.org/
https://once-for-auto-driving.github.io/

We use the BEV (Bird's Eye View) Intersection-over-Union (IoU) metric to compare
predicted cuboids with ground truth. Following KITTI conventions, we report recall at a
70% IoU threshold for cars/vehicles and 50% for other classes. Because each Ground
Truth cuboid is guaranteed to yield one simulation input and our system outputs only one
cuboid per input (if the method is successful), precision is not applicable in our
evaluation framework.

 
Default dimensions

Default class dimensions are computed as the average size of cuboids for each class in
the respective dataset. On our annotation platform, users can input expected default
dimensions, or let the platform keep a running average based on existing annotations.
Thus, this process is transferable and customizable to real-world use cases.

 
Results and comparisons

 

In this section, we compare our system’s performance with the original Latte method.
The key results are highlighted in Table 1. Note that Latte is only tested against KITTI, so
we only report the figures mentioned in their paper.

Dataset Avg IoU
(Ours)

Avg IoU
(Latte)

Recall
(Ours)

Recall
(Latte)

Recall w/o  
Correction

KITTI 0.8316 82.9 0.8607 84.8 0.8434

nuScenes 0.7987 NA 0.8213 NA 0.7952

ONCE 0.7687 NA 0.7943 NA 0.7812

Table 1 - The Recall column reports recall values using the entirety of our system. The last column
mentions recall values when not using the last step of our system, where we adjust the predicted
cuboid to fit a cuboid with default dimensions.

 

There are several reasons for the disparity in performance of our system on KITTI
compared to the other datasets. One, the point clouds in KITTI are much denser
compared to the other two datasets. Two, as mentioned in the KITTI paper, annotators
were instructed to only label objects that were clearly visible. Per the paper:

“The annotators were asked to draw bounding boxes for instances for which they feel
confident, for example instances of vehicles where at least two complete edges are visible.
Instances that are far away tend to be sparse or occluded and are therefore not annotated.”

This results in annotated objects that always have a good number of points, and
precludes objects that are highly occluded or very far away. Since these are the major
failure cases for our system, not having them in the test set results in higher accuracy
values.

Qualitative Observations

 

In qualitative analysis, we observe several patterns: 

 
Annotation of pedestrians

Pedestrians in nuScenes are often labeled with loose-fitting cuboids, reducing the
reported IoU despite visually reasonable predictions. Pedestrians in KITTI, on the other
hand, are only labeled only in X and Y axes, ignoring the Z dimension completely. 

 
Impact of point density

Our system performs best when an object is well-scanned, i.e., with a dense point
distribution. Performance degrades for distant or partially occluded objects. As already
mentioned earlier, this is why the performance of our system is better on the KITTI
dataset compared to other datasets. 

 
Effectiveness of dimension correction

The correction step using class-specific default dimensions substantially improves both
the shape and alignment of the generated cuboids, especially for classes with consistent
size (e.g., cars, trucks). This is reflected in the reported values in table 1 above. 

 

 Example predictions

Img-4. Examples from KITTI (Figures A and B) and Nuscenes (Figure C). Red cuboids are

predictions from our system, while green cuboids are ground truth cuboids.

Img-5. Examples from KITTI (Figures A) and Nuscenes (Figure C). Due to only the front side

of the vehicles being visible, our method (sans adjustment from default dimensions) only

creates a cuboid around the visible points in close proximity. The last step in our method

helps alleviate this very issue. Red cuboids are predictions from our system, while green

cuboids are ground truth cuboids.

Built into Mindkosh

Our 1-click cuboid generation system is fully integrated into our annotation platform,
designed for large scale datasets with multiple sensors.

Single-click interaction: Annotators simply click on a point within an object — the
system clusters nearby points, fits a cuboid, and adjusts its shape using predefined
dimensions.

Custom class dimensions: For each object class (e.g., car, truck, pedestrian), users can
optionally define expected default dimensions. These help ensure reliable cuboid fits,
even in sparse or partially occluded scans.

Labeling the KITTI dataset on Mindkosh.

Want to see Mindkosh in action? Let us know!

https://mindkosh.com/contact.html

